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Abstract

Several transport models are investigated in the context oftwo-dimensional fiber composites. We compare
the thermal and electrical transport through the fiber composites as a function of the conductivity ratio and
the fiber density. Three models will be considered and compared: 1) discretized solutions, 2) equivalent
resistance, and 3) effective medium approximation. In the case of electrical transport, where the conductiv-
ity of the fiber is presumably many orders of magnitude largerthan the matrix, the second model provides
a fast and reliable way to predict conductance of the combined system. However, if the two materials are
similar in conductivity, the second model fails to accurately capture the conductivity. Thermal transport is
predicted using the discretized model because the conductivity ratio is non-negligible. The third model is an
analytic approximation based on Maxwell’s equation and is used to predict both types of transport through
a compound with inclusions of ellipsoidal geometry. The analytic model works well for lower conductivity
ratios and all area densities but under-predicts conductivity for high conductivity ratios.
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1. Introduction

Thermal and electrical transport through a low-
conductivity matrix containing high-conductivity fi-
bers is important to several applications including
flexible thin-film transistors (TFT) [1], proton ex-
change membranes (PEM) [2], and direct-energy con-
version devices [3].

For flexible TFTs, low-temperature processes are
required to prevent destruction of the substrate, but
most semiconductors with good electrical perfor-
mance require high-temperature processing[4]. Most
research has been directed toward finding compati-
ble high-temperature substrates [5] or high-performance
electronic materials with low processing tempera-
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tures [6, 7]. Another approach is to combine the
good electrical performance of nanofibers into flexi-
ble substrates. In fact, Biercuk et al. [8] have shown
that nanotube/epoxy composites percolate at 0.1–
0.2 wt% loading. This feature suggests that com-
posite materials may retain flexibility while provid-
ing good electrical performance with low process-
ing temperatures. In direct energy conversion devices—
particularly Peltier devices—high electrical conduc-
tivity and low thermal conductivity are preferred for
superior performance [9]. However, most materials
do not exhibit both of these properties simultane-
ously and strategies for tuning the material prop-
erties are being sought [10]. For example, com-
posite structures involving high conductivity fibers
and a low conductivity matrix could improve the
performance of direct energy conversion devices.
Nanofibers can limit the thermal transport through
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phonon confinement and boundary scattering while
maintaining high electrical conductivity [3, 11]. The
substrate, while not contributing to the electrical per-
formance, will also limit thermal transport [12]. The
net result is a material with high electrical conduc-
tivity and low thermal conductivity.

If we consider the fiber composite more care-
fully, we also notice that the conductivity ratio for
thermal and electrical performance is different by
orders of magnitude. Table 1 illustrates this feature
for a composite composed of fibers (calcined needle
coke Fl08) embedded in a thermoplastic copolymer
matrix (Vectra A950RX) [13]. Because the trans-
port is a function of the conductivity ratio, we ex-
pect that different concentrations of fibers in the ma-
trix will affect the thermal and electrical transport in
different ways. In fact, Zimmerman [14] has shown
that as the aspect ratio of fibers increases, the trans-
port properties of the compound become more sen-
sitive to the conductivity ratio.

The purpose of the present work is to investi-
gate the effectiveness of several transport models
in the context of two-dimensional fiber composites
and to compare the thermal and electrical transport
through a given material as a function of the con-
ductivity ratio, fiber aspect ratio and the fiber den-
sity. Because the conductivity ratio of the fiber to
the matrix is different when considering thermal trans-
port compared to electrical transport, the rate of con-
ductivity enhancement with fiber density should also
be different. If the thermal and electrical properties
can be decoupled, then the opportunity for design-
ing improved TFTs and energy conversion devices
can be identified.

Our analytic model is an effective medium ap-
proximation for a compound with inclusions of el-
lipsoidal geometries. This approximation works well
to predict the total conductivity of a compound ma-
terial with a low density of inclusions. However,
the approximation underestimates the conductivity
at higher fiber densities because the model does not
account for fiber overlap. Numerical models are
well suited for iteratively solving for transport and
better approximate for fiber-fiber overlap. Thermal

Table 1: Conductivity ratios of the fiber to matrix. Data ob-
tained from King et al. [13]

Thermal Electrical
(W/mK) (1/Ωm)

matrix 0.2 1× 10−14

fiber 600 1× 102

ratio 3× 103 1× 1016

transport is determined using a percolation model.
Fibers are placed randomly on the surface of the de-
vice. When a direct path of fibers is established be-
tween the two contacts, the compound is said to per-
colate. This model works well to determine thermal
transport because the conductivity ratio of fiber/matrix
is O(103). Thus, thermal transport is predicted by a
discretization model, which superimposes a small
square mesh on the device. Conductivity is deter-
mined by solving a system of linear equations which
obey Kirchoff’s law at each node of the network.
Electrical transport is predicted by assuming that
the matrix does not contribute to transport because
the conductivity ratio of fiber/matrix isO(1016). A
resistor is placed between any two fiber intersec-
tions and Ohm’s law is used to relate the current
through the resistor to the potential across the resis-
tor.

2. Transport Models

2.1. Effective Medium Approximation

Most effective medium approximation (EMA)
models predict the effective conductance of a com-
posite material where severe restrictions are placed
on the inclusion geometry and material properties.
For example, Maxwell’s model is valid for circular
inclusions that are randomly distributed and non-
overlapping. This approach has been shown to be
valid only for low concentrations [15]. This model
however has been extended to ellipsoidal geome-
tries where the thermal conductivity of the com-
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poundk can be found as

k
km
=

1− βc
1+ βc

, (1)

wherec is the area fraction of fibers to matrix mate-
rial, and

β =
(1− r2)(1+ α)2

4(1+ αr)(α + r)
. (2)

In the foregoing expression, the matrix material ther-
mal conductivity iskm, and the ellipse is described
by the major axis radius, andα is the aspect ratio
defined as the fiber width (w) divided by the fiber
length (L f ). The thermal conductivity ratio (r =
k f /km > 1) is the conductivity of the fiber divided by
the thermal conductivity of the matrix. This method
can be used to approximate an inclusion of arbi-
trary aspect ratio including fibers (α → 0). In the
limit of extremely narrow fibers compared to their
length, the fiber-density parameterna2 becomes a
more meaningful independent variable than the area
fraction [16], wherea is the fiber length normalized
by the device size. Note that a non-trivial limit can
only be obtained for a conductivity ratio ofr → ∞.
In this case, the conductivity of the compound be-
comes

k
km
=

1+ nπa2/4
1− nπa2/4

. (3)

This form may be appropriate for the electrical
transport, but equation 1 should be used for thermal
transport where the conductivity ratio is smaller. Zim-
merman [14] further provides a comparison between
the extended Maxwell’s model and the differential
method, which gives an implicit form (stated with-
out derivation).

1
1− c

=

(

k
km

)
2α

(1+α)2
(

km − k f

k − k f

) (

k + k f

km + k f

)( 1−α
1+α)

2

(4)

This implicit formulation will be used to compare
to the numerical solutions.

Note that Maxwell’s model does not account for
overlap of the fibers, but the differential method does

statistically. Therefore, Maxwell’s method is strictly
only valid in the dilute limit, but conceivably the
differential method applies for a wider range of fiber
densities. In addition, Maxwell’s model is for inclu-
sions with ellipsoidal geometry and not for fibers.
Because the fibers have a larger area for the same
aspect ratio compared to ellipsoids, the fiber density
will not be accurate using Maxwell’s model. For
comparison, we have used two numerical models
which will increase the accuracy of the simulation
for conducting fibers in a polymer matrix.

2.2. Thermal Transport

Thermal transport was determined by creating
a numerical model where the device is discretized
into an equivalent resistor network of uniformly spaced
resistors. Fibers are randomly-oriented on the sur-
face and a square mesh is superimposed on the com-
posite device. Figure 1 shows how the thermal re-
sistances are defined relative to the discretized ma-
terial description. The mesh size is defined smaller
than the width of the fibers so that several nodes lie
within each fiber in both directions. The thermal
resistance is defined asRi = L/kiA, where the con-
ductivity is designated by the material of the cell.
For all resistances, the length of the resistorL and
the cross sectional area of the cellA are identical.
Therefore the ratio of resistances is related to the
conductivity ratio (Rm/R f = r). A sample discretized
device is shown in Figure 2. Note that to include
thermal contact resistance between materials, the
overall resistance between any two adjacent nodes
is

R =



























2Rm both matrix

2R f both fiber

Rm + R f + Rc otherwise

(5)

whereRc represents the contact resistance. The value
of Rc is largely unknown and can depend on a wide
number of variables including materials and pro-
cessing parameters. Therefore, a representative value
is difficult to define. Consequently, we have as-
sumed that the contact resistance is negligible and
left this study for another time.
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Figure 1: One example cell with surrounding cells is shown.
The different colors represent different material types for each
cell, and the corresponding resistances are indicatedR f for
fiber resistance andRm for matrix resistance. The temperature
is fixed at the center of the cell.

Figure 2: Discretization of equivalent resistance forn = 50
andL f = 0.5.

A system of linear equations obeying Kirchoff’s
law at each node of the network is then generated.
These equations can be gathered using matrix nota-
tion

Av = 0, (6)

whereA is a square matrix that has the size of the
number of sites and the number of resistors placed
in each node with equations for Ohm’s law and Kir-
choff’s law, v is the vector containing the potential
and current at each node.

Finally, the system is solved iteratively. In this
way, the value of the potential can be calculated
across the network for a known applied field. This
leads to the total conductance of the lattice. In both
numerical models, the system is treated as being pe-
riodic in terms of fiber placement. If a fiber extends
beyond the boundary, it is allowed to reenter at the
opposite side. Consequently, the fiber density re-
mains constant for each simulation.

2.3. Electrical Transport

Because the fibers are long compared to their
width, a dilute random array of fibers in a matrix
could conceivably be arranged such that the fibers
provide a direct conduction path between two con-
tacts (either electrical or thermal). When a direct
path is established, the network of fibers is said to
conduct. As a result, the effective conductivity of
the compound may appear more like that of the fiber
material despite having low fiber densities. This
argument suggests that the fiber laden compound
could conduct at significantly lower densities than
compounds with circular inclusions. Therefore, we
have developed a simple conduction model based
on the fiber connectivity. In this model, we assume
the matrix does not contribute to the transport. In-
stead, only when the fibers create a conduction path
will the transport be non-zero.

To compute the effective conductivity using the
fiber network model, the fibers are placed randomly
in the device. Between any two intersections that
share a fiber, we create a resistor. A sample device
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Figure 3: Fiber network ( 5 fibers) showing resistors in a sam-
ple device. The resistance is given byR = ρL/A f whereL is
the length between fiber crossings andA f is the cross sectional
area of the fiber.

with 5 fibers is shown in Figure 3. The electrical re-
sistance (Re) depends on the material resistivity (ρ),
length and width (diameter) of the fiber and reduces
to

Re =
2ρ
πaα
, (7)

where the resistivity is the reciprocal of conductiv-
ity. Ohm’s law (V = IR) is used to relate the cur-
rent through the resistor to the potential across the
resistor. Furthermore, at each intersection, we bal-
ance the currents to produce a linear system with the
same number of unknown potentials and currents
as equations. The applied voltage divided by the
total current through the device gives the effective
conductivity of the compound. The resistance net-
work approach is valid when the conductivity ratio
is large. This model should approach the percola-
tion model for large fiber density but will predict
zero conductivity depending on the network formed
by the random placement of fibers. If there is no
conductive path, then the conductivity is zero. This
model can be used to identify the percolation thresh-
old as well as predict the effective conductivity of
the network.

3. Results

Using the properties in Table 1, we have con-
structed a study on the electrical and thermal trans-
port of a two-terminal planar device that contains
a compound material. The compound consists of a
matrix with random placed fibers. The number and
length of fibers are varied to determine the effects of
the fiber-density parameterna2 on transport, where
n is the number of fibers in the device. Note that the
area densityc for the analytic solutions (equation 1)
can be deduced from the density parameter as

c =
nAellipse

Adevice
=

nπ(L f /2)(w/2)

L2
=

nπa2α

4
(8)

wherea = L f /L is the fiber length normalized by
the square root of the device area (L =

√
A), andw

is the fiber width. In the present case,L is simply the
length of a side of the square device. Because the
fibers in the computational model are rectangular,
the area densityc is expressed as

c =
nA f iber

Adevice
=

nL f w

L2
= na2α (9)

whereA f iber is the projected area of the fiber on the
device. Note that neither equation 8 or 9 are exact
because they do not consider overlap. Therefore,
the approximation becomes worse for large num-
bers of fibers. Furthermore, the accuracy also de-
pends on the aspect ratioα = w/L f ; for long thin
fibers the overlap area between two intersecting fi-
bers decreases asw2, but the fiber area decreases as
w.

Because fibers are placed randomly, several sim-
ulations were performed, results were averaged to
obtain a representative conductivity. In the case of a
compound whose conductivity ratio is large (fiber
conductance is much larger than the matrix), the
variation in predicted compound conductance can
be orders of magnitude. A simple average will pre-
fer values at the high end of the range and mask the
fact that many orientations will result in nearly zero
conductance.
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Figure 4: Thermal conductivity forL f = 0.5 (α = 0.05). The
infinite aspect ratio case (α = 0) is an upper bound, and the
circular inclusion case (α = 1) is a lower bound.

3.1. Thermal results

The effective thermal conductivity as predicted
by the discretized model is shown in Figure 4 and
5. The results are shown forL f = 1.0 and 0.5. In
all simulations, the normalized width of the fibers is
0.025 or 2.5% of the device length. The horizontal
error bars represent the variance in the fiber density
which results from the amount of overlap due to the
random placement of the fibers and the vertical error
bars represent the variance in the calculated thermal
conductivity. The blue line represents equation 4,
which accounts for the difference in area between
fibers, with fiber overlap, and inclusions with ellip-
soidal geometry. These results represent a limiting
case of negligible contact resistance. As the contact
resistance becomes comparable to the resistance of
the matrix material, the effect of the fibers will be
reduced and the conductivity of the matrix is even-
tually recovered for all area densities.

Both the numerical and analytic model are in
very good agreement for both fiber lengths. How-
ever, the analytic model (equation 4) predicts lower
conductivity at higher area densities for the shorter
fibers. The reason for the discrepancy is unknown
but is likely due to the difference between ellipse
and rectangular geometry of the analytic fibers ver-
sus the numerical fibers. As the fibers become shorter
this discrepancy has a bigger impact. Nevertheless,
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Figure 5: Thermal conductivity forL f = 1.0 (α = 0.025). The
infinite aspect ratio case (α = 0) is an upper bound, and the
circular inclusion case (α = 1) is a lower bound.

these results correspond well with observed low per-
colation thresholds observed in CNT/epoxy com-
pounds [8].

As expected the conduction for the shorter fibers
is lower than that of the longer fibers for the same
area density. In other words, we can have twice as
many short fibers, but the conductivity will still be
lower. This is because the possibility of overlap
between the short fibers is reduced until very high
loadings are achieved. This effect will be important
to device designers.

3.2. Electrical results

The calculated electrical conductivity is shown
in Figure 6 and 7 for theL f = 0.5 and theL f = 1.0
size fibers respectively. As suggested by Zimmer-
man [14], the large conductivity ratio makes the so-
lution much more sensitive to the aspect ratio com-
pared to the thermal solution. Consequently, the ap-
proximation of the geometry of the fiber in the an-
alytic approach (ellipse) may reduce the accuracy
of the analytic solution compared to the numerical
solution.

For the electrical transport studies, percolation
is determined by the number of fibers needed to cre-
ate a conduction path across the device. Because the
electrical transport depends on creating a conduc-
tion path across the device, simulations for the low-
est loadings can be unreliable. At small loadings,
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Figure 6: electrical conductivity forL f = 0.5 (α = 0.05). The
infinite aspect ratio case (α = 0) is an upper bound.

a conduction path may not be formed since the fi-
bers are laid randomly. In such cases, the conductiv-
ity is exactly zero. Therefore, only loadings larger
than about 10% projected area density were able to
create a conduction path and exhibit non-negligible
conductivities. (This equates to about 4 fibers of
lengthL f = 0.5 or two fibers of lengthL f = 1.0.
Even here, the probability of not forming a conduc-
tion path is non-negligible.) This agrees well with
Kymakis et al. [17] who found that a 2D mixture of
CNTs and P3OT percolates at 11% weight fraction,
which suggests that in compounds where the two
materials have dramatically different conductivities,
a conduction path is required to achieve percolation.
This is in contrast to the thermal results where trans-
port is achieved even at very low loadings. These
calculated results also agree well with experimen-
tal results from Thonruang et al. [18], who showed
conductivities for 0.25 mm fibers (corresponding to
our L f = 1.0 case) of 2 (Ωm)−1 at 20% loading. Our
results over-predict their measurements by 20-30%,
which may be due to the difference in the conduc-
tivity of the two matrix materials, the contact re-
sistance that is not considered in our model, or un-
certainty in the measurements. Nevertheless, these
experimental data validate at least a portion of our
analysis.

According to the numerical results, the compos-
ite did not percolate untilc ≈ 0.18 for L f = 0.5
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Figure 7: Electrical conductivity forL f = 1.0 (α = 0.025).
The infinite aspect ratio case (α = 0) is an upper bound.

(Figure 6). This is further supported by [18], which
suggests that high aspect ratio fibers will percolate
at lower concentrations. In general, the numerical
models agree well with equation 4 but only in trend.
As the conductivity ratio becomes larger, the perco-
lation threshold increases. But because we can cre-
ate a conduction path across the device, we see a
low percolation threshold that can not be predicted
by the analytic model. Nevertheless, we would have
expected better agreement between the numerical
and analytic model at higher area densities. Interest-
ingly, we see better agreement between the models
for longer fibers. Yet, there is nothing in the deriva-
tion that would suggest that the analytic model is
deficient for shorter fibers (See Zimmerman [14]).

The results from the equivalent resistance nu-
merical model should be questioned because of in-
herent issues with the solution approach. Fibers
with shorter length and systems with low fiber den-
sity are often problematic due to the fact low den-
sity systems often yield non-invertible singular ma-
trices. Consequently, solutions are difficult to ob-
tain for dilute systems. The discretized model used
for the thermal transport study could not be used to
predict electrical transport because the fiber/matrix
conductivity ratio is too large and stiff matrices re-
sulted from the formulation.
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3.3. Combined transport

The Lorenz number (L) is the ratio of thermal
to electrical conductivity and a plot ofLT = k/σ
versus area density is shown in Figure 8. SinceLT
is not constant, the models presented in this work
show that thermal and electrical properties can be
predicted and decoupled for the design of electronic
devices. In the design of thermoelectric materials
for example, a designer wants low thermal conduc-
tivity and high electrical conductivity (smaller Lorenz
number). One then would select a high loading of
longer (high aspect ratio) fibers.

4. Conclusion

Effective thermal and electrical transport through
randomly-oriented conducting fibers in a non-conducting
matrix was predicted using analytical and numer-
ical methods. Analytical solutions were obtained
by calculating the effective conductivity of a ma-
trix with small ellipsoidal inclusions using an effec-
tive medium approximation. This model works well
for dilute systems and for systems with low conduc-
tivity ratios. However, the analytic model does not
account for fiber-fiber overlap exactly and therefore
under-predicts the conductivity for systems with high
fiber density. Numerical methods must be used in
order to determine conductivity for non-dilute sys-
tems and systems with large conductivity ratio.

Electrical transport was predicted by assuming
that the matrix does not contribute to transport and
that the system will conduct when a direct path of
fibers is established between contacts. The conduc-
tivity is calculated by placing a resistor between two
fiber-fiber intersections and using a system of lin-
ear equation which obey Ohm’s law to predict the
resistance of the system. Although this approach is
grounded in engineering principles, the results leave
some doubt whether the approximation is valid.

On the other hand, the discretized model used
to calculate thermal transport agrees very well with
the analytic model suggesting that the discretization
approach would be suitable for multi-material sys-
tems and complex geometries.

None of the models presented here consider the
contact resistance between fibers, which can affect
or even dominate the resistance in percolation net-
works. However, the analysis uses “effective” mate-
rial properties, which could include a contact com-
ponent. For dense networks where the contact dom-
inates, the resulting conductance may be lower than
predicted here. In addition, we have not considered
three dimensional percolation networks [19]. Pre-
sumably, neither effect will change the conclusion
concerning the relative change of thermal and elec-
trical conductances in films. The numerical models,
however, can be extended to three dimensions; in
general, the analytic solution can not.

In metals, the Lorenz number is a constant. In
non-metals it can vary significantly. If the thermal
and electrical conductivities can be controlled sep-
arately, the effects are decoupled. Usually, though,
the addition of a filler in a composite that improves
one conductivity, will also improve the other con-
ductivity. We are investigating how these two con-
ductivities (electrical and thermal) change relative
to each other with the addition of fibers to a poly-
mer. The results indicate that certain loadings and
fiber lengths can be used to tune the relative prop-
erties, which can be important, for example, for the
design of thermoelectric devices, which require low
thermal conductivity and high electrical conductiv-
ity. In addition, these findings could be used to
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predict an optimum thermal and electrical transport
without sacrificing the flexibility of the TFT.
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