Coupled Quantum-Scattering Modeling of the Thermoelectric Properties of Si/Ge/Si Quantum Well Superlattices

Anuradha Bulusu Advisor: Prof. D. G. Walker Interdisciplinary Program in Material Science Vanderbilt University, Nashville, TN

Motivation

$$ZT = \frac{S^2 \sigma T}{\kappa}$$

- Quantum well superlattices proposed to improve thermoelectric figure of merit ZT.
- Phonon interface scattering and phonon confinement contribute to low κ .
- Most models assume electrical conductivity to not change significantly with confinement.

Objective

- NEGF (Nonequilibrium Green's Function)
 - Coupled quantum and scattering modeling in nanodevices.
- Study Nanoscale Effects
 - Effect of reduced dimensionality on
 - Seebeck coefficient of the device.
 - Electrical conductivity.
 - Device performance i.e. Power factor $S^2 \sigma$.

Device Models

NEGF: Non-Equilibrium Green's function

Nonequilibrium Green's Function Method

- Broadening of energy density of states near source and drain contacts leads to current flow.
- NEGF method does not require a statistical distribution of carriers within the device.
- Can be used to solve extreme nonequilibrium problems.

Numerical Scheme

- Standard control volume approach used to model films and wires.
- Grid spacing a chosen so that value of t > energy range of integration to ensure grid independence.
- Green's function $G(E) = \left[\left(E i0^{+} \right) I H \Sigma_{1} \Sigma_{2} \Sigma_{s} \right]^{-1}$
- Opportunities to improve computational efficiency: Parallelization of energy integration loop, adaptive mesh integration.

Numerical Scheme Contd.

- Spatially varying effective mass at the interface.
- Effective mass at interface is harmonic mean of the two masses.
- Interface lies on node to ensure Hamiltonian is Hermitian.

Poisson's equation

$$\nabla^2 \left\{ U \right\} = U_0 \left(n(r) - n_0 \right) \qquad U_0 = -\frac{q^2}{\varepsilon_0 \varepsilon_r a}$$

Value of grid spacing a must be chosen so that $U_0 \approx k_B T$. Anderson mixing used to accelerate convergence.

Modeling Confinement Effects

6 nm

2D Film

Source and drain Fermi functions have to take into account the effect of infinite boundaries in x, y directions for film and along the x axis for the wire.

$$f_{2D}(E_n)$$

$$E_{n} = \int_{0}^{\infty} \frac{\hbar^{2} k_{x}^{2}}{2m^{*}} + \int_{0}^{\infty} \frac{\hbar^{2} k_{y}^{2}}{2m^{*}} + \frac{\hbar^{2}}{2m^{*}} \left(\frac{n\pi}{L_{z}}\right)^{2}$$

$$f_{1D}\left(E_{n}\right)$$

$$E_{n} = \int_{0}^{\infty} \frac{\hbar^{2} k_{x}^{2}}{2m^{*}} + \frac{\hbar^{2}}{2m^{*}} \left(\frac{n\pi}{L_{y}}\right)^{2} + \frac{\hbar^{2}}{2m^{*}} \left(\frac{n\pi}{L_{z}}\right)^{2}$$

Nanoscale Effects on Thermoelectric Properties

Reduced dimensionality of the nanowire compared to the nanofilm results in

- Higher Seebeck coefficient of the wire.
- Decreased electrical conductivity of wire due to size quantization.

Si/Ge/Si Quantum Well Superlattice Film

NEGF used to model and study electron-phonon scattering and confinement effects on a single period of Si/Ge/Si superlattice film.

Thermoelectric Properties of Quantum Well

NEGF successfully predicts Seebeck coefficient of Si/Ge/Si quantum well structure.

NEGF calculations performed on single layer of Si/Ge/Si superlattice layer.

Experiments usually carried out on 1200 layers of superlattices on strained substrate.

Scattering Effects on Power Factor of Superlattice

Near-elastic, phasebreaking, electronphonon scattering.

Scattering introduces resistance to current flow through momentum redistribution of electrons.

- Scattering and confinement effects dominate over doping effects to decrease electrical conductivity.
- Decrease in electrical conductivity dominates over increase in Seebeck coefficient to reduce net power factor.

Conclusions

- NEGF successfully couples quantum confinement effects with scattering effects.
- Confinement of electrons decreases electrical conductivity and increases Seebeck coefficient in films and wires.
- Incoherent electron-phonon scattering introduces resistance to electron transport.
- 28% to 77% decrease in power factor with scattering due to increased electrical resistance.
- Optimal film width has to be chosen when designing thermoelectric structures with electron confinement.

Acknowledgements

- Prof. Supriyo Datta, Dept. of Electrical and Computing Engineering, Purdue University, West Lafayette, IN.
- Vanderbilt Discovery Grant, VINSE Fellowship and NSF.

Electrical Conductivity of Silicon Thin Films with Varying Effective Mass

Non-Equilibrium Green's Function Formalism

Modified wave equation $(H + U + \Sigma_1 + \Sigma_2 + \Sigma_s)\psi_{\alpha}(\vec{r}) = \varepsilon_{\alpha}\psi_{\alpha}(\vec{r})$ with self-energy terms

Green's function
$$G(E) = \left[\left(E - i0^{+} \right) I - H - \Sigma_{1} - \Sigma_{2} - \Sigma_{s} \right]^{-1}$$

Spectral function
$$\frac{A(E)}{2\pi} = D(E) = i(G(E) - G^{+}(E))$$

Device Current
$$I_i = f(A_i, G^n)$$

where G^n is the density matrix.