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Motivation
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Quantum well superlattices proposed to improve
thermoelectric figure of merit ZT.

Phonon interface scattering and phonon confinement
contribute to low «.

Most models assume electrical conductivity to not change
significantly with confinement.




Objective
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« NEGF (Nonequilibrium Green’s Function)

e Coupled quantum and scattering modeling in
nanodevices.

o Study Nanoscale Effects

« Effect of reduced dimensionality on

 Seebeck coefficient of the device.
 Electrical conductivity.

 Device performance i.e. Power factor S?c.
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NEGF: Non-Equilibrium Green’s function
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* Broadening of energy density of states near source and drain
contacts leads to current flow.

« NEGF method does not require a statistical distribution of
carriers within the device.

e Can be used to solve extreme nonequilibrium problems.



= Numerical Scheme
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«  Standard control volume approach used to model films and wires.

« (Grid spacing a chosen so that value of t > energy range of integration
to ensure grid independence.

«  Green'’s function G(E)=[(E—i‘3+)'"*‘21‘22_25}_1

Opportunities to improve computational efficiency: Parallelization of
energy integration loop, adaptive mesh integration.




Numerical Scheme Contd.
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Spatially varying effective mass at the interface.
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Effective mass at interface is harmonic mean of the two masses.

Interface lies on node to ensure Hamiltonian is Hermitian.

Poisson’s equation
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Vi{U}=Uy(n(r)-n,) U, = P

Value of grid spacing a must be chosen so that U, = k;T.

Anderson mixing used to accelerate convergence.



Modeling Confinement Effects

Source and drain Fermi functions
have to take into account the effect of
Infinite boundaries in X, y directions
for film and along the x axis for the

2D Film

wire.
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= Nanoscale Effects on Thermoe
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Seebeck Coefficient (uV/K)
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Reduced dimensionality of
the nanowire compared to
the nanofilm results in

* Higher Seebeck
coefficient of the wire.

» Decreased electrical
conductivity of wire due
to size quantization.
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;SI/GG/SI Quantum Well Superlattice Film
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NEGF used to model and
study electron-phonon
scattering and
confinement effects on a
o single period of Si/Ge/Si
Source By superlattice film.




= Thermoelectric Properties of Quantum Well
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_ttering Effects on Power Factor of Superlattice
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Scattering and confinement effects dominate over doping effects
to decrease electrical conductivity.

Decrease in electrical conductivity dominates over increase in
Seebeck coefficient to reduce net power factor.



Conclusions

NEGF successfully couples quantum confinement
effects with scattering effects.

Confinement of electrons decreases electrical
conductivity and increases Seebeck coefficient in
fllms and wires.

Incoherent electron-phonon scattering introduces
resistance to electron transport.

28% to 77% decrease in power factor with scattering
due to Iincreased electrical resistance.

Optimal film width has to be chosen when designing
thermoelectric structures with electron confinement.
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= Electrical Conductivity of Silicon Thin Films with

Varying Effective Mass
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= Non-Equilibrium Green's Function Formalism

Modified wave equation - ;
_ H+U+2 +2,+2 (N=¢ v (r)
with self-energy terms | 172 S)V a a’a

-1
Green’s function G(E) = [(E —io+)| -H-%, -%, —23}

Spectral function (E) =D(E) = I(G(E) G* (E))

Device Current l; = f(Aan)

where G" is the density matrix.
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